HEARING AID TECHNOLOGY EFFECT ON FRONT/BACK LOCALIZATION IN QUIET

Jingjing Xu, Jani Johnson, and Robyn Cox

University of Memphis
Memphis, TN
Presented at the American Auditory Society Convention, Scottsdale, AZ, March 2015
INTRODUCTION

- Levels of Hearing Aid Technology (at least):
 - Premium
 - Mid-Level
 - Basic

- Compared to basic hearing aids, premium hearing aids have more advanced technologies and sophisticated features.
FEATURES THAT TARGET LOCALIZATION

<table>
<thead>
<tr>
<th>Feature</th>
<th>Basic</th>
<th>Premium</th>
<th>Claimed advantages of premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinna effect simulation</td>
<td>no</td>
<td>yes</td>
<td>Specialized multiband directionality to improve front/back localization and promote natural sound quality</td>
</tr>
<tr>
<td>Bilateral synchronization</td>
<td>some</td>
<td>more</td>
<td>Coordinates functioning of left and right hearing aids to avoid imbalance, and maximize localization by preserving inter-aural cues</td>
</tr>
</tbody>
</table>
INTRODUCTION

- Premium hearing aids are claimed to yield better horizontal front/back localization performance than basic hearing aids.

- However, little or no independent research explores how well all features work together, either in the lab or in daily life.

- This research evaluated front/back localization performance in a laboratory as well as localization performance in the real world using premium and basic hearing aids.
RESEARCH QUESTIONS

In the laboratory and in daily life, is localization performance:

1. Better with hearing aids compared to without?
2. Better with examples of premium hearing aids compared to basic?
3. Better with one manufacturer compared to another?
Participants

- 45 participants (30M, 15F)
- Age: 61 to 81 (M=70.3, SD=5.5)
- Symmetrical mild to moderate sensorineural hearing loss
- Use of English as first language
Hearing Aid Fitting and Field Trial

- Two basic and two premium mini-BTE hearing aids from two major manufacturers (brands).
- The hearing aids were bilaterally fitted with appropriate coupling strategies (Open, vented, or closed) and verified using NAL-NL2 targets.
- Feature settings followed manufacturers’ recommendation.
- There were three manually selectable programs: (1) default automatic program; (2) fixed front-facing directional program; and (3) “speech finder” program
- Four-weeks acclimatization prior to evaluation
LABORATORY TEST
IN A SOUND TREATED BOOTH
TEST STIMULI

- Thirty-two short sentences spoken by a female and a male talker were selected and filtered to
 - 16 low-frequency (LF) sentences (200-600Hz)
 - 16 high-frequency (HF) sentences (1500-4500Hz)

- Duration of the filtered sentences: 1.3-1.4s (M=1.33s)

- Presentation levels were determined by setting the level for full spectrum sentences at 75 dB SPL
 - 72 dB SPL for LF sentences
 - 61 dB SPL for HF sentences
Test Procedures

- 4 LF (2 female LF and 2 male LF sentences) and 4 HF (2 female HF and 2 male HF sentences) sentences were presented from each of the 4 connected loudspeakers in random order.

- No masking noises.

- The default automatic hearing aid program was used.

- The participants listened to each presentation and reported the loudspeaker number that they thought the sentence was presented from.
SELF-REPORT MEASURE

- Speech, Spatial, and Qualities of Hearing Scale (SSQ) – Benefit (Gatehouse & Noble, 2004; Jensen et al., 2009)

- Example:

<table>
<thead>
<tr>
<th>Part 2.</th>
<th>For This Pair Of Hearing Aids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. You are outdoors in an unfamiliar place. You hear someone using a lawnmower. You can’t see where they are. Can you tell right away where the sound is coming from?</td>
<td>Using the hearing aids compared to no hearing aids
Much worse</td>
</tr>
<tr>
<td></td>
<td>-5</td>
</tr>
</tbody>
</table>
RESULTS
STATISTICAL COMPARISONS

- General Linear Model repeated measures analysis of variance (ANOVA) with planned contrasts:
 - Unaided vs. Aided (Question 1)
 - Premium vs. Basic (overall) (Question 2)
 - Premium vs. Basic (Brand A)
 - Premium vs. Basic (Brand B)
 - Brand A vs. Brand B (Question 3)
LABORATORY DATA
AREA OF ANGULAR ERROR (AAE)

- AAE is the area of the polygon formed by connecting the mean absolute angular errors for adjacent azimuths on a polar plot (Xu & Cox, 2013).

- Greater AAE values correspond to more errors.

- AAE values were used for statistical analyses.
High Frequency Stimuli
IS AIDED BETTER THAN UNAIDED? (HF stimuli)

NS

![Bar chart showing mean AAE (degree^2) for different conditions: Unaided, Basic A, Basic B, Premium A, Premium B. The chart indicates that the aid is better than unaided with a NS result.](chart.png)
IS PREMIUM BETTER THAN BASIC (OVERALL)? (HF stimuli)

Overall, Premium had fewer errors than Basic

\[p = .046 \]

![Bar Chart](chart.png)

- **Mean AAE (degree^2)**
 - Worse
 - Basic: 7000
 - Premium: 5500
 - Better
 - Basic: 0
 - Premium: 0

Legend
- Basic A
- Basic B
- Premium A
- Premium B
IS PREMIUM BETTER THAN BASIC (FOR EACH BRAND)? (HF stimuli)

\[p = 0.163 \]

\[p = 0.077 \]
IS THERE A DIFFERENCE BETWEEN THE TWO BRANDS? (HF stimuli)

Brand B had fewer errors than Brand A

\[p = .005 \]
Low Frequency Stimuli
IS AIDED BETTER THAN UNAIDED? (LF stimuli)

Worse

Mean AAE (degree^2)

Better

NS

Unaided | Basic A | Basic B | Premium A | Premium B

22
IS PREMIUM BETTER THAN BASIC (OVERALL)?
(LF stimuli)

Worse

7000
6000
5000
4000
3000
2000
1000
0

Better

Mean AAE (degree^2)

Basic
Premium

Basic A
Basic B
Premium A
Premium B

NS
IS PREMIUM BETTER THAN BASIC (FOR EACH BRAND)? (LF stimuli)

Better

Worse

Mean AAE (degree^2)

Brand A

Brand B

NS

NS

Basic A Premium A Basic B Premium B
IS THERE A DIFFERENCE BETWEEN THE TWO BRANDS? (LF stimuli)

Worse

Better

Mean AAE (degree^2)

Brand A

Brand B

NS

Basic A Premium A Basic B Premium B
SELF-REPORT DATA

These data are from part 2 of the SSQ questionnaire, including 15 items for two subscales: (1) Localization and (2) Distance & movement.

For each listening condition, an average score across the 15 items was computed for statistical analyses.
The SSQ scores showed that
- the participants reported significant benefit from using hearing aids (p < .001).
- no significant difference between premium and basic hearing aids, either overall or for each manufacturer.
- no significant difference between the two manufacturers.
On the whole, there was no significant difference between aided and unaided localization performance in the laboratory test. Unaided performance was not worse than aided performance. This finding is consistent with previous research (e.g., Van den Bogaert et al., 2006).

In daily life, participants reported better localization when aided, which is consistent with previous research (e.g., Gatehouse & Akeroyd, 2006).
Overall, in lab premium hearing aids yielded significantly fewer errors than basic hearing aids with high-frequency stimuli. However, there were no significant differences for low-frequency stimuli.

In daily life, no difference between premium-basic levels or brands.

Previous independent research showed that pinna effect simulation improved localization in the lab in quiet (Keidser et al, 2009) but had no effect in daily life (Keidser et al, 2009).
SUMMARY: BRAND A VS. BRAND B

- Devices from one manufacturer (Brand B) yielded fewer errors than those from the other manufacturer (Brand A) when high frequency stimuli were used.

- There was no significant difference between the two manufacturers when low frequency stimuli were used as well as in the real world.
TAKE HOME MESSAGE

- Compared to basic features, premium features yielded better front/back localization performance in some circumstance in laboratory tests.

- However, it should not be assumed that the better localization performance with premium hearing aid features in a laboratory environment will necessarily translate to the real world.

- More effectiveness research on different hearing aid technologies is needed.
ACKNOWLEDGEMENT

This project is supported by NIDCD
REFERENCES